Ejemplo 1: similitud de coseno python numpy
from scipy import spatial
dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]
result = 1 - spatial.distance.cosine(dataSetI, dataSetII)
Ejemplo 2: similitud del coseno de pitón
# Example function using numpy:
from numpy import dot
from numpy.linalg import norm
def cosine_similarity(list_1, list_2):
cos_sim = dot(list_1, list_2) / (norm(list_1) * norm(list_2))
return cos_sim
# Note, the dot product is only defined for lists of equal length. You
# can use your_list.extend() to add elements to the shorter list
# Example usage with identical lists/vectors:
your_list_1 = [1, 1, 1]
your_list_2 = [1, 1, 1]
cosine_similarity(your_list_1, your_list_2)
--> 1.0 # 1 = maximally similar lists/vectors
# Example usage with opposite lists/vectors:
your_list_1 = [1, 1, 1]
your_list_2 = [-1, -1, -1]
cosine_similarity(your_list_1, your_list_2)
--> -1.0 # -1 = maximally dissimilar lists/vectors
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)