Saltar al contenido

Usa pandas.shift () dentro de un grupo

Solución:

Los objetos agrupados de los pandas tienen un groupby.DataFrameGroupBy.shift método, que cambiará una columna específica en cada grupo norte periods, al igual que el marco de datos normal shift método:

df['prev_value'] = df.groupby('object')['value'].shift()

Para el siguiente marco de datos de ejemplo:

print(df)

     object  period  value
0       1       1     24
1       1       2     67
2       1       4     89
3       2       4      5
4       2      23     23

El resultado sería:

     object  period  value  prev_value
0       1       1     24         NaN
1       1       2     67        24.0
2       1       4     89        67.0
3       2       4      5         NaN
4       2      23     23         5.0

IFF su DataFrame ya está ordenado por las claves de agrupación, puede usar una sola shift en todo el DataFrame y where para NaN las filas que se desbordan en el siguiente grupo. Para DataFrames más grandes con muchos grupos, esto puede ser un poco más rápido.

df['prev_value'] = df['value'].shift().where(df.object.eq(df.object.shift()))

   object  period  value  prev_value
0       1       1     24         NaN
1       1       2     67        24.0
2       1       4     89        67.0
3       2       4      5         NaN
4       2      23     23         5.0

Algunos tiempos relacionados con el rendimiento:

import perfplot
import pandas as pd
import numpy as np

perfplot.show(
    setup=lambda N: pd.DataFrame({'object': np.repeat(range(N), 5), 
                                  'value': np.random.randint(1, 1000, 5*N)}), 
    kernels=[
        lambda df: df.groupby('object')['value'].shift(),
        lambda df: df['value'].shift().where(df.object.eq(df.object.shift())),
    ],
    labels=["GroupBy", "Where"],
    n_range=[2 ** k for k in range(1, 22)],
    equality_check=lambda x,y: np.allclose(x, y, equal_nan=True),
    xlabel="# of Groups"
)

ingrese la descripción de la imagen aquí

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *