Saltar al contenido

¿Devolviendo probabilidades en una predicción de clasificación en Keras?

Esta es la solución más acertada que encomtrarás brindar, sin embargo mírala pausadamente y valora si es compatible a tu trabajo.

Solución:

Entonces resultó que el problema era que no estaba normalizando completamente los datos en el script de predicción.

Mi script de predicción debería haber tenido las siguientes líneas:

# these lines are copied from the example for loading MNIST data
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_train = x_train.astype('float32') # this line was missing
x_train /= 255 # this line was missing too

Debido a que los datos no se lanzaron para flotar y se dividieron por 255 (por lo que estaría entre 0 y 1), solo aparecían como 1 y 0.

Keras predict de hecho, devuelve probabilidades, y no clases.

No se puede reproducir su problema con la configuración de mi sistema:

Python version 2.7.12
Tensorflow version 1.3.0
Keras version 2.0.9
Numpy version 1.13.3

Aquí está mi resultado de predicción para su x_slice con el modelo cargado (entrenado para 20 épocas, como en su código):

print(prev_model.predict(x_slice))
# Result: 
[[  1.00000000e+00   3.31656316e-37   1.07806675e-21   7.11765177e-30
    2.48000320e-31   5.34837679e-28   3.12470132e-24   4.65175406e-27
    8.66994134e-31   5.26426367e-24]
 [  0.00000000e+00   5.34361977e-30   3.91144999e-35   0.00000000e+00
    1.00000000e+00   0.00000000e+00   1.05583665e-36   1.01395577e-29
    0.00000000e+00   1.70868685e-29]
 [  3.99137559e-38   1.00000000e+00   1.76682222e-24   9.33333581e-31
    3.99846307e-15   1.17745576e-24   1.87529709e-26   2.18951752e-20
    3.57518280e-17   1.62027896e-28]
 [  6.48006586e-26   1.48974980e-17   5.60530329e-22   1.81973780e-14
    9.12573406e-10   1.95987500e-14   8.08566866e-27   1.17901132e-12
    7.33970447e-13   1.00000000e+00]
 [  2.01602060e-16   6.58242856e-14   1.00000000e+00   6.84244084e-09
    1.19809885e-16   7.94907624e-14   3.10690434e-19   8.02848586e-12
    4.68330721e-11   5.14736501e-15]
 [  2.31014903e-35   1.00000000e+00   6.02224725e-21   2.35928828e-23
    7.50006509e-15   4.06930881e-22   1.13288827e-24   4.20440718e-17
    4.95182972e-17   1.85492109e-18]
 [  0.00000000e+00   0.00000000e+00   0.00000000e+00   1.00000000e+00
    0.00000000e+00   6.30200370e-27   0.00000000e+00   5.19937755e-33
    1.63205659e-31   1.21508034e-20]
 [  1.44608573e-26   1.00000000e+00   1.78712268e-18   6.84598301e-19
    1.30042071e-11   2.53873986e-14   5.83169942e-17   1.20201071e-12
    2.21844570e-14   3.75015198e-15]
 [  0.00000000e+00   6.29184453e-34   9.22474943e-29   0.00000000e+00
    1.00000000e+00   3.05067233e-34   1.43097161e-28   1.34234082e-29
    4.28647272e-36   9.29760838e-34]
 [  4.68828449e-30   5.55172479e-20   3.26705529e-19   9.99999881e-01
    3.49577992e-22   1.27715460e-11   4.99185615e-36   1.19164204e-20
    4.21086124e-16   1.52631387e-07]]

Sospecho que hay algún problema de redondeo al imprimir (o has entrenado durante muchas más épocas y tus probabilidades para el conjunto de entrenamiento se han acercado mucho a 1)…

Para convencerse de que realmente obtiene probabilidades y no predicciones de clase, le sugiero que intente obtener predicciones de su modelo entrenado para una sola época; normalmente deberías ver mucho menos 1.0‘s – aquí está el caso aquí para un model entrenado para epochs=1:

print(model.predict(x_slice))
# Result: 

[[  9.99916673e-01   5.36548761e-08   6.10747229e-05   8.21199933e-07
    6.64725164e-08   6.78853041e-07   9.09637220e-06   4.56192402e-06
    1.62688798e-06   5.23997733e-06]
 [  7.59836894e-07   1.78043920e-05   1.79073555e-04   2.95592145e-05
    9.98031914e-01   1.75839632e-05   5.90557102e-06   1.27705920e-03
    3.94643757e-06   4.36416740e-04]
 [  4.48473330e-08   9.99895334e-01   2.82608235e-05   5.33154832e-07
    9.78453227e-06   1.58954310e-06   3.38150176e-06   5.26260410e-05
    8.09341054e-06   3.28643267e-07]
 [  7.38236849e-07   4.80247072e-05   2.81726116e-05   4.77648537e-05
    7.21933879e-03   2.52177160e-05   3.88786475e-07   3.56770557e-04
    2.83472677e-04   9.91990149e-01]
 [  5.03611082e-05   2.69402866e-04   9.92011130e-01   4.68175858e-03
    9.57477605e-05   4.26214538e-04   7.66683661e-05   7.05923303e-04
    1.45670515e-03   2.26032615e-04]
 [  1.36330849e-10   9.99994516e-01   7.69141934e-07   1.44130311e-07
    9.52201333e-07   1.45219332e-07   4.43408908e-07   6.93398249e-07
    2.18685204e-06   1.50741769e-07]
 [  2.39427478e-09   3.75754922e-07   3.89349816e-06   9.99889374e-01
    1.85837867e-09   1.16176770e-05   1.89989760e-11   3.12301523e-07
    1.13220040e-05   8.29571582e-05]
 [  1.45760115e-08   9.99900222e-01   3.67058942e-06   4.04857201e-06
    1.97999962e-05   7.85745397e-06   8.13850420e-06   1.87294081e-05
    2.81870762e-05   9.38157609e-06]
 [  7.52560858e-09   8.84437856e-09   9.71140025e-07   5.20911703e-10
    9.99986649e-01   3.12135370e-07   1.06521384e-05   1.25693066e-06
    7.21853368e-08   5.21001624e-08]
 [  8.67672298e-08   2.17907742e-04   2.45352840e-06   9.95455265e-01
    1.43749105e-06   1.51766278e-03   1.83744309e-08   3.83995541e-07
    9.90309782e-05   2.70584645e-03]]

Recuerda algo, que tienes la opción de comentar tu experiencia si te ayudó.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *