Mantén la atención ya que en esta crónica vas a encontrar la contestación que buscas.
Ejemplo 1: capa densa
Dense is the only actual network layer in that model.
A Dense layer feeds all outputs from the previous layer to all its neurons, each neuron providing one output to the next layer.
It's the most basic layer in neural networks.
A Dense(10) has ten neurons. A Dense(512) has 512 neurons.
Ejemplo 2: keras de capa densa
>>> # Create a `Sequential` model and add a Dense layer as the first layer.
>>> model = tf.keras.models.Sequential()
>>> model.add(tf.keras.Input(shape=(16,)))
>>> model.add(tf.keras.layers.Dense(32, activation='relu'))
>>> # Now the model will take as input arrays of shape (None, 16)
>>> # and output arrays of shape (None, 32).
>>> # Note that after the first layer, you don't need to specify
>>> # the size of the input anymore:
>>> model.add(tf.keras.layers.Dense(32))
>>> model.output_shape
(None, 32)
Si conservas alguna desconfianza o forma de aumentar nuestro crónica eres capaz de añadir una explicación y con placer lo observaremos.
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)