Saltar al contenido

Seguimiento del color blanco usando python opencv

Solución:

Echemos un vistazo al espacio de color HSV:

ingrese la descripción de la imagen aquí

Necesitas blanco, que está cerca del centro y bastante alto. Empezar con

sensitivity = 15
lower_white = np.array([0,0,255-sensitivity])
upper_white = np.array([255,sensitivity,255])

y luego ajuste el umbral a sus necesidades.

También podrías considere usar HSL espacio de color, que significa tono, saturación, Ligereza. Entonces solo tendría que mirar la claridad para detectar el blanco y reconocer otros colores sería fácil. Tanto HSV como HSL mantienen colores similares cerca. Además, HSL probablemente resultaría más preciso para detectar el blanco; he aquí por qué:

ingrese la descripción de la imagen aquí

Escribí esto para rastrear el color blanco:

import cv2
import numpy as np

cap = cv2.VideoCapture(0)

while(1):

    _, frame = cap.read()
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

    # define range of white color in HSV
    # change it according to your need !
    lower_white = np.array([0,0,0], dtype=np.uint8)
    upper_white = np.array([0,0,255], dtype=np.uint8)

    # Threshold the HSV image to get only white colors
    mask = cv2.inRange(hsv, lower_white, upper_white)
    # Bitwise-AND mask and original image
    res = cv2.bitwise_and(frame,frame, mask= mask)

    cv2.imshow('frame',frame)
    cv2.imshow('mask',mask)
    cv2.imshow('res',res)

    k = cv2.waitKey(5) & 0xFF
    if k == 27:
        break

cv2.destroyAllWindows()

Traté de rastrear la pantalla blanca de mi teléfono y obtuve esto:

ingrese la descripción de la imagen aquí

Puede intentar cambiar los valores HSV También puede probar el espacio de color HSL como dijo Legat, sería más preciso

Aquí hay una secuencia de comandos de umbral de color HSV para determinar los límites inferior y superior usando controles deslizantes

ingrese la descripción de la imagen aquí

Resultados

Usando esta imagen de muestra

Con estos umbrales inferior / superior

lower_white = np.array([0,0,168])
upper_white = np.array([172,111,255])

Obtenemos píxeles blancos aislados (izquierda) y la máscara binaria (derecha)


Aquí está el script, recuerde cambiar la ruta de la imagen de entrada

import cv2
import sys
import numpy as np

def nothing(x):
    pass

# Load in image
image = cv2.imread('1.jpg')

# Create a window
cv2.namedWindow('image')

# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)

# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)

# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0

output = image
wait_time = 33

while(1):

    # get current positions of all trackbars
    hMin = cv2.getTrackbarPos('HMin','image')
    sMin = cv2.getTrackbarPos('SMin','image')
    vMin = cv2.getTrackbarPos('VMin','image')

    hMax = cv2.getTrackbarPos('HMax','image')
    sMax = cv2.getTrackbarPos('SMax','image')
    vMax = cv2.getTrackbarPos('VMax','image')

    # Set minimum and max HSV values to display
    lower = np.array([hMin, sMin, vMin])
    upper = np.array([hMax, sMax, vMax])

    # Create HSV Image and threshold into a range.
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    mask = cv2.inRange(hsv, lower, upper)
    output = cv2.bitwise_and(image,image, mask= mask)

    # Print if there is a change in HSV value
    if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
        print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
        phMin = hMin
        psMin = sMin
        pvMin = vMin
        phMax = hMax
        psMax = sMax
        pvMax = vMax

    # Display output image
    cv2.imshow('image',output)

    # Wait longer to prevent freeze for videos.
    if cv2.waitKey(wait_time) & 0xFF == ord('q'):
        break

cv2.destroyAllWindows()
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *