Saltar al contenido

ROC para clasificación multiclase

Fernando, miembro de este gran equipo, nos ha hecho el favor de redactar esta sección ya que conoce perfectamente el tema.

Solución:

Como las personas mencionaron en los comentarios, debe convertir su problema en binario usando OneVsAll acercarse, por lo que tendrá n_class número de curvas ROC.

Un ejemplo sencillo:

from sklearn.metrics import roc_curve, auc
from sklearn import datasets
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
from sklearn.preprocessing import label_binarize
from sklearn.cross_validation import train_test_split
import matplotlib.pyplot as plt

iris = datasets.load_iris()
X, y = iris.data, iris.target

y = label_binarize(y, classes=[0,1,2])
n_classes = 3

# shuffle and split training and test sets
X_train, X_test, y_train, y_test =
    train_test_split(X, y, test_size=0.33, random_state=0)

# classifier
clf = OneVsRestClassifier(LinearSVC(random_state=0))
y_score = clf.fit(X_train, y_train).decision_function(X_test)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])

# Plot of a ROC curve for a specific class
for i in range(n_classes):
    plt.figure()
    plt.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f)' % roc_auc[i])
    plt.plot([0, 1], [0, 1], 'k--')
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic example')
    plt.legend(loc="lower right")
    plt.show()

ingrese la descripción de la imagen aquí

ingrese la descripción de la imagen aquíingrese la descripción de la imagen aquí

Esto funciona para mí y es bueno si los quieres en la misma parcela. Es similar a la respuesta de @omdv pero quizás un poco más breve.

def plot_multiclass_roc(clf, X_test, y_test, n_classes, figsize=(17, 6)):
    y_score = clf.decision_function(X_test)

    # structures
    fpr = dict()
    tpr = dict()
    roc_auc = dict()

    # calculate dummies once
    y_test_dummies = pd.get_dummies(y_test, drop_first=False).values
    for i in range(n_classes):
        fpr[i], tpr[i], _ = roc_curve(y_test_dummies[:, i], y_score[:, i])
        roc_auc[i] = auc(fpr[i], tpr[i])

    # roc for each class
    fig, ax = plt.subplots(figsize=figsize)
    ax.plot([0, 1], [0, 1], 'k--')
    ax.set_xlim([0.0, 1.0])
    ax.set_ylim([0.0, 1.05])
    ax.set_xlabel('False Positive Rate')
    ax.set_ylabel('True Positive Rate')
    ax.set_title('Receiver operating characteristic example')
    for i in range(n_classes):
        ax.plot(fpr[i], tpr[i], label='ROC curve (area = %0.2f) for label %i' % (roc_auc[i], i))
    ax.legend(loc="best")
    ax.grid(alpha=.4)
    sns.despine()
    plt.show()

plot_multiclass_roc(full_pipeline, X_test, y_test, n_classes=16, figsize=(16, 10))

Recuerda que tienes autorización de reseñar tu experiencia si diste con la solución.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *