Saltar al contenido

Química – ¿Por qué un estado singlete se llama singlete y un estado triplete se llama triplete?

Posterior a de esta larga búsqueda de datos solucionamos esta duda que tienen algunos los lectores. Te ofrecemos la respuesta y nuestro deseo es servirte de mucha apoyo.

Solución:

Solución 1:

Los términos surgieron en los primeros días de la física cuántica cuando se observó que las líneas espectrales que se esperaba que fueran singletes eran más complejas (dobles, tripletes, etc.).

Un electrón puede tener un número cuántico de espín de $+frac12$ o $-frac12$. Para un sistema que existe como singlete, todos los giros están emparejados y el giro total del sistema es $S=0$. Si tenemos un solo electrón, $S=frac12$. Si tenemos un sistema triplete con 2 electrones desapareados, $S=1$. También asociado con estos electrones/sistemas hay un vector de momento angular de espín, $L$. La mecánica cuántica nos dice que $L$ puede tener valores distintos de $2S+1$. Asi que

para un singlete, $L = 2(0) + 1 = 1$ solo existe un estado (singlete)

para un doblete, $L = 2left(frac12right) + 1 = 2$ existen dos estados (doblete)

para un triplete, $L = 2(1) + 1 = 3$ existen tres estados (triplete)

Solución 2:

Un par de electrones, siendo fermiones, debe tener una función de onda antisimétrica, es decir, si $psi(xi_1,xi_2)$ es una función de onda que describe el sistema, donde $xi_1$ son la posición y el espín del electrón 1 y $xi_2 $ es la posición y el espín del electrón 2, entonces $psi(xi_2,xi_1)=-psi(xi_1,xi_2)$.

En la primera aproximación, el grado de libertad del espín se puede separar de los grados de libertad orbitales, de modo que la función de onda se convierte en $chi(s_1,s_2)phi(x_1,x_2)$, donde $s_i$ es el espín de $i$ electrón, y $x_i$ es la posición del electrón $i$th. Aquí $chi$ es la parte de espín de la función de onda, y $phi$ es la parte orbital. Para preservar la antisimetría total de la función de onda, $chi$ y $phi$ pueden ser simétricos o antisimétricos. Si uno es simétrico, el otro debe ser antisimétrico.

El espín de un solo electrón puede ser $uparrow$ hacia arriba o $downarrow$ hacia abajo. Es decir, las opciones más simples para un sistema de dos electrones podrían ser $flecha arribaflecha arriba$, $flecha abajoflecha abajo$, $flecha abajoflecha arriba$ y $flecha arribaflecha abajo$. Pero los dos últimos no respetan la indistinguibilidad de los electrones. Para incluir correctamente la indistinguibilidad de los electrones, debemos tomar combinaciones lineales simétricas y antisimétricas de estos estados de espín.

Ahora tenemos cuatro opciones, divididas en dos variantes:

a) Orbital antisimétrico y parte de espín simétrico de la función de onda

  • $flecha arribaflecha arriba$
  • $flecha abajoflecha abajo$
  • $flecha abajoflecha arriba+flecha arribaflecha abajo$

b) Parte de espín orbital simétrica y antisimétrica

  • $flecha abajoflecha arriba-flecha arribaflecha abajo$

Desde aquí podemos ver que la parte de espín simétrico de la función de onda da lugar a tres estados diferentes: estos son estados de triplete. Si la parte de espín de la función de onda es antisimétrica, solo existe uno de esos estados: es el estado singlete.

Cuando uno hace mediciones espectroscópicas con una resolución no muy alta, los estados con diferentes espines pero con los mismos orbitales parecerán tener las mismas energías, por lo que las líneas espectrales aparecerán iguales. Pero si coloca su sistema en un campo magnético, verá que las líneas espectrales se dividen según las multiplicidades de espín: los estados de espín singlete seguirán siendo líneas simples, mientras que los espín tripletes se dividirán en tres líneas espectrales diferentes. Este es el origen de tal denominación.

Reseñas y valoraciones

Si sostienes algún recelo o disposición de enriquecer nuestro división puedes realizar una crónica y con mucho gusto lo estudiaremos.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *