Saltar al contenido

Quiero multiplicar dos columnas en un DataFrame de pandas y agregar el resultado en una nueva columna

Ya no busques más en otras webs porque has llegado al espacio indicado, tenemos la respuesta que quieres hallar sin problemas.

Solución:

Creo que una solución elegante es usar el where método (ver también el API docs):

In [37]: values = df.Prices * df.Amount

In [38]: df['Values'] = values.where(df.Action == 'Sell', other=-values)

In [39]: df
Out[39]: 
   Prices  Amount Action  Values
0       3      57   Sell     171
1      89      42   Sell    3738
2      45      70    Buy   -3150
3       6      43   Sell     258
4      60      47   Sell    2820
5      19      16    Buy    -304
6      56      89   Sell    4984
7       3      28    Buy     -84
8      56      69   Sell    3864
9      90      49    Buy   -4410

Además, esta debería ser la solución más rápida.

Puede utilizar el marco de datos apply método:

order_df['Value'] = order_df.apply(lambda row: (row['Prices']*row['Amount']
                                               if row['Action']=='Sell'
                                               else -row['Prices']*row['Amount']),
                                   axis=1)

Por lo general, es más rápido usar estos métodos en lugar de bucles for.

Si estamos dispuestos a sacrificar la concisión de la solución de Hayden, también se podría hacer algo como esto:

In [22]: orders_df['C'] = orders_df.Action.apply(
               lambda x: (1 if x == 'Sell' else -1))

In [23]: orders_df   # New column C represents the sign of the transaction
Out[23]:
   Prices  Amount Action  C
0       3      57   Sell  1
1      89      42   Sell  1
2      45      70    Buy -1
3       6      43   Sell  1
4      60      47   Sell  1
5      19      16    Buy -1
6      56      89   Sell  1
7       3      28    Buy -1
8      56      69   Sell  1
9      90      49    Buy -1

Ahora hemos eliminado la necesidad de la if declaración. Usando DataFrame.apply()también eliminamos el for círculo. Como señaló Hayden, las operaciones vectorizadas siempre son más rápidas.

In [24]: orders_df['Value'] = orders_df.Prices * orders_df.Amount * orders_df.C

In [25]: orders_df   # The resulting dataframe
Out[25]:
   Prices  Amount Action  C  Value
0       3      57   Sell  1    171
1      89      42   Sell  1   3738
2      45      70    Buy -1  -3150
3       6      43   Sell  1    258
4      60      47   Sell  1   2820
5      19      16    Buy -1   -304
6      56      89   Sell  1   4984
7       3      28    Buy -1    -84
8      56      69   Sell  1   3864
9      90      49    Buy -1  -4410

Esta solución requiere dos líneas de código en lugar de una, pero es un poco más fácil de leer. Sospecho que los costos computacionales también son similares.

Reseñas y calificaciones

Finalizando este artículo puedes encontrar las críticas de otros usuarios, tú asimismo eres capaz mostrar el tuyo si te gusta.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *