Necesitamos tu ayuda para difundir nuestros ensayos referente a las ciencias informáticas.
Solución:
Es importante considerar primero el escalar de Ricci. Pongo aquí un diagrama de una esfera bidimensional con radio $r$. Desde el polo, se transporta un vector al ecuador y de regreso, de modo que el ángulo en $A$ es $pi/2$ Ahora divida el ángulo por el área de la superficie de la región encerrada por el transporte paralelo. Esto es $1/8^th$ el área de la esfera $4pi r^2$ El resultado es la curvatura de Ricci para la región $R~=~1/r^2$ que es la curvatura escalar de Ricci de la esfera. En general, para un transporte paralelo de un vector alrededor de un bucle, la desviación en el ángulo de los vectores define la curvatura de Ricci como $$ R~=~fracthetacal A. $$
En general, podemos pensar que el tensor de Ricci se debe a la desviación de la planitud de una métrica, de modo que $$ g_munu~=~eta_munu~-~frac13 R_mualphanubetax^alpha x^beta~+~O(x^3), $$ donde $eta_munu$ es la métrica del espaciotiempo plano. El elemento de volumen métrico es $sqrtdet(g)$ o a menudo se escribe como $sqrt-g$ y entonces es $$ sqrt-g~=~left(1~-~ frac16R_alphabetax^alpha x^betaright)sqrt-eta. $$ Esto significa que el tensor de Ricci está asociado con cambiar el volumen de una región del espacio. Esto se compara con el tensor de Weyl que define un volumen que conserva el difeomorfismo. El tensor de Ricci define entonces un flujo de Ricci de la métrica $$ fracdg_ijdt~=~-2R_ij $$ En cuatro dimensiones podemos pensar en esto como el flujo de una métrica espacial con respeto al tiempo. Esto también tiene conexiones con la estructura conforme.
Mi respuesta ingenua, como ya sabes, es crear el tensor de Ricci, comienzas con el tensor de índice de Riemann 4, luego encuentras que para describir la curvatura del espacio-tiempo, (solo) necesitas diez elementos en el tensor de Ricci. Eso te da una métrica, si tienes suerte, basada en el espacio 4D. El tensor se puede dividir en el tensor de Weyl, que expresa la fuerza de marea que siente un cuerpo al moverse a lo largo de una geodésica, y el tensor de Ricci. La desaparición del tensor de Weyl es la condición para la planitud conforme del espacio que abarca.
De: Tensores de Ricci y Weyl
La curvatura de Ricci, o componente de traza del tensor de Riemann, contiene precisamente la información sobre cómo cambian los volúmenes en presencia de fuerzas de marea, por lo que el tensor de Weyl es la componente sin traza del tensor de Riemann. Es un tensor que tiene las mismas simetrías que el tensor de Riemann.
La curvatura de Ricci da como resultado un aumento, mientras que los términos de Weyl proporcionan astigmatismo. Convertirá círculos en elipses. El tensor de Ricci producirá efectos de aumento de volumen.
Mire imágenes de lentes gravitacionales (Einstein) de galaxias lejanas para ver los efectos físicos.
También puedes leer esto: Significado de la Curvatura de Ricci, que podría ser un duplicado.
De: Ricci Tensor explicó la lectura recomendada.
Supongamos que en lugar de mirar dos objetos pequeños en el espacio, consideramos una colección de objetos pequeños en el espacio que llena un volumen. Describir la aceleración relativa de dos cualesquiera de ellos requeriría la ecuación de desviación geodésica, pero para describir la evolución de su volumen, tendríamos que promediar varias versiones diferentes de la ecuación. Estos tienen aproximadamente el resultado de promediar el tensor de Riemann en un tensor de Ricci. Entonces, en aproximadamente el mismo sentido que el tensor de Riemann gobierna la evolución de un vector o un desplazamiento paralelo propagado a lo largo de una geodésica, el tensor de Ricci gobierna la evolución de un pequeño volumen paralelo propagado a lo largo de una geodésica. Aunque debemos tener cuidado. A diferencia de los vectores, los volúmenes pueden cambiar a lo largo de las geodésicas incluso en un espacio plano. Por lo tanto, debemos restar cualquier cambio que ocurriría en el espacio plano.
Me detendré aquí, ya que hay muchas más personas que pueden responder a tu pregunta sin darte información incorrecta.
Valoraciones y reseñas
Agradecemos que desees añadir valor a nuestro contenido contribuyendo tu veteranía en las referencias.