Saltar al contenido

Pyspark: Reemplazando el valor en una columna buscando en un diccionario

La guía o código que hallarás en este artículo es la resolución más rápida y efectiva que hallamos a tus dudas o problema.

Solución:

Puedes usar cualquiera na.replace:

df = spark.createDataFrame([
    ('Tablet', ), ('Phone', ),  ('PC', ), ('Other', ), (None, )
], ["device_type"])

df.na.replace(deviceDict, 1).show()
+-----------+
|device_type|
+-----------+
|     Mobile|
|     Mobile|
|    Desktop|
|      Other|
|       null|
+-----------+

o mapa literal:

from itertools import chain
from pyspark.sql.functions import create_map, lit

mapping = create_map([lit(x) for x in chain(*deviceDict.items())])


df.select(mapping[df['device_type']].alias('device_type'))
+-----------+
|device_type|
+-----------+
|     Mobile|
|     Mobile|
|    Desktop|
|       null|
|       null|
+-----------+

Tenga en cuenta que la última solución convertirá los valores que no están presentes en el mapeo en NULL. Si este no es un comportamiento deseado, puede agregar coalesce:

from pyspark.sql.functions import coalesce


df.select(
    coalesce(mapping[df['device_type']], df['device_type']).alias('device_type')
)
+-----------+
|device_type|
+-----------+
|     Mobile|
|     Mobile|
|    Desktop|
|      Other|
|       null|
+-----------+

Aquí hay una pequeña función de ayuda, inspirada en la R recode función, que abstrae las respuestas anteriores. Como beneficio adicional, agrega la opción de un valor predeterminado.

from itertools import chain
from pyspark.sql.functions import col, create_map, lit, when, isnull
from pyspark.sql.column import Column

df = spark.createDataFrame([
    ('Tablet', ), ('Phone', ),  ('PC', ), ('Other', ), (None, )
], ["device_type"])

deviceDict = 'Tablet':'Mobile','Phone':'Mobile','PC':'Desktop'

df.show()
+-----------+
|device_type|
+-----------+
|     Tablet|
|      Phone|
|         PC|
|      Other|
|       null|
+-----------+

Aquí está la definición de recode.

def recode(col_name, map_dict, default=None):
    if not isinstance(col_name, Column): # Allows either column name string or column instance to be passed
        col_name = col(col_name)
    mapping_expr = create_map([lit(x) for x in chain(*map_dict.items())])
    if default is None:
        return  mapping_expr.getItem(col_name)
    else:
        return when(~isnull(mapping_expr.getItem(col_name)), mapping_expr.getItem(col_name)).otherwise(default)

Crear una columna sin un valor predeterminado da null/None en todos los valores sin igual.

df.withColumn("device_type", recode('device_type', deviceDict)).show()

+-----------+
|device_type|
+-----------+
|     Mobile|
|     Mobile|
|    Desktop|
|       null|
|       null|
+-----------+

Por otro lado, especificando un valor para default reemplaza todos los valores no coincidentes con este valor predeterminado.

df.withColumn("device_type", recode('device_type', deviceDict, default='Other')).show()

+-----------+
|device_type|
+-----------+
|     Mobile|
|     Mobile|
|    Desktop|
|      Other|
|      Other|
+-----------+

Puedes hacer esto usando df.withColumn también:

from itertools import chain
from pyspark.sql.functions import create_map, lit

deviceDict = 'Tablet':'Mobile','Phone':'Mobile','PC':'Desktop'

mapping_expr = create_map([lit(x) for x in chain(*deviceDict.items())])

df = df.withColumn('device_type', mapping_expr[df['dvice_type']])
df.show()

Calificaciones y comentarios

Puedes asistir nuestra función poniendo un comentario y dejando una puntuación te damos las gracias.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *