Hola, encontramos la respuesta a lo que buscabas, deslízate y la obtendrás aquí.
Solución:
cambiado el 20 de octubre: esta clase Invdisttree combina ponderación de distancia inversa y scipy.spatial.KDTree.
Olvídese de la respuesta original de fuerza bruta; este es en mi humilde opinión el método de elección para la interpolación de datos dispersos.
""" invdisttree.py: inverse-distance-weighted interpolation using KDTree
fast, solid, local
"""
from __future__ import division
import numpy as np
from scipy.spatial import cKDTree as KDTree
# http://docs.scipy.org/doc/scipy/reference/spatial.html
__date__ = "2010-11-09 Nov" # weights, doc
#...............................................................................
class Invdisttree:
""" inverse-distance-weighted interpolation using KDTree:
invdisttree = Invdisttree( X, z ) -- data points, values
interpol = invdisttree( q, nnear=3, eps=0, p=1, weights=None, stat=0 )
interpolates z from the 3 points nearest each query point q;
For example, interpol[ a query point q ]
finds the 3 data points nearest q, at distances d1 d2 d3
and returns the IDW average of the values z1 z2 z3
(z1/d1 + z2/d2 + z3/d3)
/ (1/d1 + 1/d2 + 1/d3)
= .55 z1 + .27 z2 + .18 z3 for distances 1 2 3
q may be one point, or a batch of points.
eps: approximate nearest, dist <= (1 + eps) * true nearest
p: use 1 / distance**p
weights: optional multipliers for 1 / distance**p, of the same shape as q
stat: accumulate wsum, wn for average weights
How many nearest neighbors should one take ?
a) start with 8 11 14 .. 28 in 2d 3d 4d .. 10d; see Wendel's formula
b) make 3 runs with nnear= e.g. 6 8 10, and look at the results --
|interpol 6 - interpol 8| etc., or |f - interpol*| if you have f(q).
I find that runtimes don't increase much at all with nnear -- ymmv.
p=1, p=2 ?
p=2 weights nearer points more, farther points less.
In 2d, the circles around query points have areas ~ distance**2,
so p=2 is inverse-area weighting. For example,
(z1/area1 + z2/area2 + z3/area3)
/ (1/area1 + 1/area2 + 1/area3)
= .74 z1 + .18 z2 + .08 z3 for distances 1 2 3
Similarly, in 3d, p=3 is inverse-volume weighting.
Scaling:
if different X coordinates measure different things, Euclidean distance
can be way off. For example, if X0 is in the range 0 to 1
but X1 0 to 1000, the X1 distances will swamp X0;
rescale the data, i.e. make X0.std() ~= X1.std() .
A nice property of IDW is that it's scale-free around query points:
if I have values z1 z2 z3 from 3 points at distances d1 d2 d3,
the IDW average
(z1/d1 + z2/d2 + z3/d3)
/ (1/d1 + 1/d2 + 1/d3)
is the same for distances 1 2 3, or 10 20 30 -- only the ratios matter.
In contrast, the commonly-used Gaussian kernel exp( - (distance/h)**2 )
is exceedingly sensitive to distance and to h.
"""
# anykernel( dj / av dj ) is also scale-free
# error analysis, |f(x) - idw(x)| ? todo: regular grid, nnear ndim+1, 2*ndim
def __init__( self, X, z, leafsize=10, stat=0 ):
assert len(X) == len(z), "len(X) %d != len(z) %d" % (len(X), len(z))
self.tree = KDTree( X, leafsize=leafsize ) # build the tree
self.z = z
self.stat = stat
self.wn = 0
self.wsum = None;
def __call__( self, q, nnear=6, eps=0, p=1, weights=None ):
# nnear nearest neighbours of each query point --
q = np.asarray(q)
qdim = q.ndim
if qdim == 1:
q = np.array([q])
if self.wsum is None:
self.wsum = np.zeros(nnear)
self.distances, self.ix = self.tree.query( q, k=nnear, eps=eps )
interpol = np.zeros( (len(self.distances),) + np.shape(self.z[0]) )
jinterpol = 0
for dist, ix in zip( self.distances, self.ix ):
if nnear == 1:
wz = self.z[ix]
elif dist[0] < 1e-10:
wz = self.z[ix[0]]
else: # weight z s by 1/dist --
w = 1 / dist**p
if weights is not None:
w *= weights[ix] # >= 0
w /= np.sum(w)
wz = np.dot( w, self.z[ix] )
if self.stat:
self.wn += 1
self.wsum += w
interpol[jinterpol] = wz
jinterpol += 1
return interpol if qdim > 1 else interpol[0]
#...............................................................................
if __name__ == "__main__":
import sys
N = 10000
Ndim = 2
Nask = N # N Nask 1e5: 24 sec 2d, 27 sec 3d on mac g4 ppc
Nnear = 8 # 8 2d, 11 3d => 5 % chance one-sided -- Wendel, mathoverflow.com
leafsize = 10
eps = .1 # approximate nearest, dist <= (1 + eps) * true nearest
p = 1 # weights ~ 1 / distance**p
cycle = .25
seed = 1
exec "n".join( sys.argv[1:] ) # python this.py N= ...
np.random.seed(seed )
np.set_printoptions( 3, threshold=100, suppress=True ) # .3f
print "nInvdisttree: N %d Ndim %d Nask %d Nnear %d leafsize %d eps %.2g p %.2g" % (
N, Ndim, Nask, Nnear, leafsize, eps, p)
def terrain(x):
""" ~ rolling hills """
return np.sin( (2*np.pi / cycle) * np.mean( x, axis=-1 ))
known = np.random.uniform( size=(N,Ndim) ) ** .5 # 1/(p+1): density x^p
z = terrain( known )
ask = np.random.uniform( size=(Nask,Ndim) )
#...............................................................................
invdisttree = Invdisttree( known, z, leafsize=leafsize, stat=1 )
interpol = invdisttree( ask, nnear=Nnear, eps=eps, p=p )
print "average distances to nearest points: %s" %
np.mean( invdisttree.distances, axis=0 )
print "average weights: %s" % (invdisttree.wsum / invdisttree.wn)
# see Wikipedia Zipf's law
err = np.abs( terrain(ask) - interpol )
print "average |terrain() - interpolated|: %.2g" % np.mean(err)
# print "interpolate a single point: %.2g" %
# invdisttree( known[0], nnear=Nnear, eps=eps )
Editar: @Denis tiene razón, un Rbf lineal (por ejemplo, scipy.interpolate.Rbf con "function = 'linear'") no es lo mismo que IDW ...
(Tenga en cuenta que todos estos usarán cantidades excesivas de memoria si está usando una gran cantidad de puntos).
Aquí hay un ejemplo simple de IDW:
def simple_idw(x, y, z, xi, yi):
dist = distance_matrix(x,y, xi,yi)
# In IDW, weights are 1 / distance
weights = 1.0 / dist
# Make weights sum to one
weights /= weights.sum(axis=0)
# Multiply the weights for each interpolated point by all observed Z-values
zi = np.dot(weights.T, z)
return zi
Considerando que, esto es lo que sería un Rbf lineal:
def linear_rbf(x, y, z, xi, yi):
dist = distance_matrix(x,y, xi,yi)
# Mutual pariwise distances between observations
internal_dist = distance_matrix(x,y, x,y)
# Now solve for the weights such that mistfit at the observations is minimized
weights = np.linalg.solve(internal_dist, z)
# Multiply the weights for each interpolated point by the distances
zi = np.dot(dist.T, weights)
return zi
(Usando la función distance_matrix aquí 🙂
def distance_matrix(x0, y0, x1, y1):
obs = np.vstack((x0, y0)).T
interp = np.vstack((x1, y1)).T
# Make a distance matrix between pairwise observations
# Note: from
# (Yay for ufuncs!)
d0 = np.subtract.outer(obs[:,0], interp[:,0])
d1 = np.subtract.outer(obs[:,1], interp[:,1])
return np.hypot(d0, d1)
Poner todo junto en un buen ejemplo de copiar y pegar produce algunos gráficos de comparación rápida:
(fuente: jkington en www.geology.wisc.edu)
(fuente: jkington en www.geology.wisc.edu)
(fuente: jkington en www.geology.wisc.edu)
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import Rbf
def main():
# Setup: Generate data...
n = 10
nx, ny = 50, 50
x, y, z = map(np.random.random, [n, n, n])
xi = np.linspace(x.min(), x.max(), nx)
yi = np.linspace(y.min(), y.max(), ny)
xi, yi = np.meshgrid(xi, yi)
xi, yi = xi.flatten(), yi.flatten()
# Calculate IDW
grid1 = simple_idw(x,y,z,xi,yi)
grid1 = grid1.reshape((ny, nx))
# Calculate scipy's RBF
grid2 = scipy_idw(x,y,z,xi,yi)
grid2 = grid2.reshape((ny, nx))
grid3 = linear_rbf(x,y,z,xi,yi)
print grid3.shape
grid3 = grid3.reshape((ny, nx))
# Comparisons...
plot(x,y,z,grid1)
plt.title('Homemade IDW')
plot(x,y,z,grid2)
plt.title("Scipy's Rbf with function=linear")
plot(x,y,z,grid3)
plt.title('Homemade linear Rbf')
plt.show()
def simple_idw(x, y, z, xi, yi):
dist = distance_matrix(x,y, xi,yi)
# In IDW, weights are 1 / distance
weights = 1.0 / dist
# Make weights sum to one
weights /= weights.sum(axis=0)
# Multiply the weights for each interpolated point by all observed Z-values
zi = np.dot(weights.T, z)
return zi
def linear_rbf(x, y, z, xi, yi):
dist = distance_matrix(x,y, xi,yi)
# Mutual pariwise distances between observations
internal_dist = distance_matrix(x,y, x,y)
# Now solve for the weights such that mistfit at the observations is minimized
weights = np.linalg.solve(internal_dist, z)
# Multiply the weights for each interpolated point by the distances
zi = np.dot(dist.T, weights)
return zi
def scipy_idw(x, y, z, xi, yi):
interp = Rbf(x, y, z, function='linear')
return interp(xi, yi)
def distance_matrix(x0, y0, x1, y1):
obs = np.vstack((x0, y0)).T
interp = np.vstack((x1, y1)).T
# Make a distance matrix between pairwise observations
# Note: from
# (Yay for ufuncs!)
d0 = np.subtract.outer(obs[:,0], interp[:,0])
d1 = np.subtract.outer(obs[:,1], interp[:,1])
return np.hypot(d0, d1)
def plot(x,y,z,grid):
plt.figure()
plt.imshow(grid, extent=(x.min(), x.max(), y.max(), y.min()))
plt.hold(True)
plt.scatter(x,y,c=z)
plt.colorbar()
if __name__ == '__main__':
main()
Si estás contento con lo expuesto, eres capaz de dejar un enunciado acerca de qué le añadirías a este ensayo.