Si hallas algún error con tu código o proyecto, recuerda probar siempre en un ambiente de testing antes aplicar el código al proyecto final.
Ejemplo: datos de importación de python
# Basic syntax:withopen('/path/to/filename.extension','open_mode')as filename:
file_data = filename.readlines()# Or filename.read() # Where:# - open imports the file as a file object which then needs to be read# with one of the read options# - readlines() imports each line of the file as an element in a list# - read() imports the file contents as one long new-line-separated # string# - open_mode can be one of:# - "r" = Read which opens a file for reading (error if the file # doesn't exist)# - "a" = Append which opens a file for appending (creates the # file if it doesn't exist)# - "w" = Write which opens a file for writing (creates the file # if it doesn't exist)# - "x" = Create which creates the specified file (returns an error# if the file exists)# Note, "with open() as" is recommended because the file is closed # automatically so you don't have to remember to use file.close()# Note, if you're getting unwanted newline characters with this approach,# you can run: file_data = filename.read().splitlines() instead# Basic syntax for a delimited file with multiple fields:import csv
withopen('/path/to/filename.extension','open_mode')as filename:
file_data = csv.reader(filename, delimiter='delimiter')
data_as_list =list(file_data)# Where:# - csv.reader can be used for files that use any delimiter, not just# commas, e.g.: 't', '|', ';', etc. (It's a bit of a misnomer)# - csv.reader() returns a csv.reader object which can be iterated # over, directly converted to a list, and etc. # Importing data using Numpy:import numpy as np
data = np.loadtxt('/path/to/filename.extension',
delimiter=',',# String used to separate values
skiprows=2,# Number of rows to skip
usecols=[0,2],# Specify which columns to read
dtype=str)# The type of the resulting array# Importing data using Pandas:import pandas as pd
data = pd.read_csv('/path/to/filename.extension',
nrows=5,# Number of rows of file to read
header=None,# Row number to use as column names
sep='t',# Delimiter to use
comment='#',# Character to split comments
na_values=[""])# String to recognize as NA/NaN# Note, pandas can also import excel files with pd.read_excel()
Si piensas que ha resultado de utilidad nuestro post, sería de mucha ayuda si lo compartes con más entusiastas de la programación así contrubuyes a extender nuestra información.
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)