Saltar al contenido

Guarde el modelo MinMaxScaler en sklearn

Solución:

Incluso mejor que pickle (que crea archivos mucho más grandes que este método), puede usar sklearnherramienta incorporada:

from sklearn.externals import joblib
scaler_filename = "scaler.save"
joblib.dump(scaler, scaler_filename) 

# And now to load...

scaler = joblib.load(scaler_filename) 

Nota: sklearn.externals.joblib es obsoleto. Instale y use el puro joblib en lugar de

Así que en realidad no soy un experto en esto, pero a partir de un poco de investigación y algunos enlaces útiles, creo pickle y sklearn.externals.joblib van a ser tus amigos aquí.

El paquete pickle le permite guardar modelos o “volcar” modelos en un archivo.

Creo que este enlace también es útil. Habla de crear un modelo de persistencia. Algo que querrás probar es:

# could use: import pickle... however let's do something else
from sklearn.externals import joblib 

# this is more efficient than pickle for things like large numpy arrays
# ... which sklearn models often have.   

# then just 'dump' your file
joblib.dump(clf, 'my_dope_model.pkl') 

Aquí es donde puede obtener más información sobre los aspectos externos de sklearn.

Avísame si eso no ayuda o si no entiendo algo sobre tu modelo.

Nota: sklearn.externals.joblib es obsoleto. Instale y use el puro joblib en lugar de

Solo una nota que sklearn.externals.joblib ha sido desaprobado y reemplazado por el antiguo joblib, que se puede instalar con pip install joblib:

import joblib
joblib.dump(my_scaler, 'scaler.gz')
my_scaler = joblib.load('scaler.gz')

Tenga en cuenta que las extensiones de archivo pueden ser cualquier cosa, pero si es una de ['.z', '.gz', '.bz2', '.xz', '.lzma'] entonces se utilizará el protocolo de compresión correspondiente. Documentos para joblib.dump() y joblib.load() métodos.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *