Saltar al contenido

Gráfico de barras de línea de tiempo usando python y matplotlib

Recabamos en el mundo online y así traerte la respuesta a tu duda, si tienes alguna duda puedes dejarnos tu pregunta y responderemos con gusto, porque estamos para ayudarte.

Solución:

Puedes crear un PolyCollection de “barras”. Para esto necesitaría convertir sus fechas a números (matplotlib.dates.date2num).

import datetime as dt
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.collections import PolyCollection

data = [    (dt.datetime(2018, 7, 17, 0, 15), dt.datetime(2018, 7, 17, 0, 30), 'sleep'),
            (dt.datetime(2018, 7, 17, 0, 30), dt.datetime(2018, 7, 17, 0, 45), 'eat'),
            (dt.datetime(2018, 7, 17, 0, 45), dt.datetime(2018, 7, 17, 1, 0), 'work'),
            (dt.datetime(2018, 7, 17, 1, 0), dt.datetime(2018, 7, 17, 1, 30), 'sleep'),
            (dt.datetime(2018, 7, 17, 1, 15), dt.datetime(2018, 7, 17, 1, 30), 'eat'), 
            (dt.datetime(2018, 7, 17, 1, 30), dt.datetime(2018, 7, 17, 1, 45), 'work')
        ]

cats = "sleep" : 1, "eat" : 2, "work" : 3
colormapping = "sleep" : "C0", "eat" : "C1", "work" : "C2"

verts = []
colors = []
for d in data:
    v =  [(mdates.date2num(d[0]), cats[d[2]]-.4),
          (mdates.date2num(d[0]), cats[d[2]]+.4),
          (mdates.date2num(d[1]), cats[d[2]]+.4),
          (mdates.date2num(d[1]), cats[d[2]]-.4),
          (mdates.date2num(d[0]), cats[d[2]]-.4)]
    verts.append(v)
    colors.append(colormapping[d[2]])

bars = PolyCollection(verts, facecolors=colors)

fig, ax = plt.subplots()
ax.add_collection(bars)
ax.autoscale()
loc = mdates.MinuteLocator(byminute=[0,15,30,45])
ax.xaxis.set_major_locator(loc)
ax.xaxis.set_major_formatter(mdates.AutoDateFormatter(loc))

ax.set_yticks([1,2,3])
ax.set_yticklabels(["sleep", "eat", "work"])
plt.show()

ingrese la descripción de la imagen aquí

Tenga en cuenta que dichos gráficos se pueden generar igualmente con un gráfico de barra rota (broken_barh), sin embargo, los datos (sin clasificar) que se usan aquí facilitan un poco el uso de PolyCollection.

Y ahora tendrías que explicarme cómo puedes dormir y comer al mismo tiempo, algo que nunca puedo entender, por mucho que lo intente.

Mi solución usando Altair (ejemplo):

import altair as alt
import datetime as dt
import pandas as pd


alt.renderers.enable('jupyterlab')

data = pd.DataFrame()
data['from'] = [dt.datetime(2018, 7, 17, 0, 15),
             dt.datetime(2018, 7, 17, 0, 30),
             dt.datetime(2018, 7, 17, 0, 45), 
             dt.datetime(2018, 7, 17, 1, 0), 
             dt.datetime(2018, 7, 17, 1, 15), 
             dt.datetime(2018, 7, 17, 1, 30)]
data['to'] = [dt.datetime(2018, 7, 17, 0, 30),
             dt.datetime(2018, 7, 17, 0, 45),
             dt.datetime(2018, 7, 17, 1, 0), 
             dt.datetime(2018, 7, 17, 1, 15), 
             dt.datetime(2018, 7, 17, 1, 30), 
             dt.datetime(2018, 7, 17, 1, 45)]
data['activity'] = ['sleep','eat','work','sleep','eat','work']
#data

alt.Chart(data).mark_bar().encode(
    x='from',
    x2='to',
    y='activity',
    color=alt.Color('activity', scale=alt.Scale(scheme='dark2'))
)

Producción:

Altair_render

Aquí puedes ver las reseñas y valoraciones de los lectores

Si te sientes motivado, tienes la libertad de dejar un tutorial acerca de qué le añadirías a este post.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *