Saltar al contenido

Escriba un DataFrame de Pandas en Google Cloud Storage o BigQuery

Solución:

Pruebe el siguiente ejemplo de trabajo:

from datalab.context import Context
import google.datalab.storage as storage
import google.datalab.bigquery as bq
import pandas as pd

# Dataframe to write
simple_dataframe = pd.DataFrame(data=[{1,2,3},{4,5,6}],columns=['a','b','c'])

sample_bucket_name = Context.default().project_id + '-datalab-example'
sample_bucket_path="gs://" + sample_bucket_name
sample_bucket_object = sample_bucket_path + '/Hello.txt'
bigquery_dataset_name="TestDataSet"
bigquery_table_name="TestTable"

# Define storage bucket
sample_bucket = storage.Bucket(sample_bucket_name)

# Create storage bucket if it does not exist
if not sample_bucket.exists():
    sample_bucket.create()

# Define BigQuery dataset and table
dataset = bq.Dataset(bigquery_dataset_name)
table = bq.Table(bigquery_dataset_name + '.' + bigquery_table_name)

# Create BigQuery dataset
if not dataset.exists():
    dataset.create()

# Create or overwrite the existing table if it exists
table_schema = bq.Schema.from_data(simple_dataframe)
table.create(schema = table_schema, overwrite = True)

# Write the DataFrame to GCS (Google Cloud Storage)
%storage write --variable simple_dataframe --object $sample_bucket_object

# Write the DataFrame to a BigQuery table
table.insert(simple_dataframe)

Usé este ejemplo y el archivo _table.py del sitio de datalab github como referencia. Puedes encontrar otros datalab archivos de código fuente en este enlace.

Usar la documentación de Google Cloud Datalab

import datalab.storage as gcs
gcs.Bucket('bucket-name').item('to/data.csv').write_to(simple_dataframe.to_csv(),'text/csv')

Subir a Google Cloud Storage sin escribir un archivo temporal y solo usando el módulo GCS estándar

from google.cloud import storage
import os
import pandas as pd

# Only need this if you're running this code locally.
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = r'/your_GCP_creds/credentials.json'

df = pd.DataFrame(data=[{1,2,3},{4,5,6}],columns=['a','b','c'])

client = storage.Client()
bucket = client.get_bucket('my-bucket-name')
    
bucket.blob('upload_test/test.csv').upload_from_string(df.to_csv(), 'text/csv')
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *