Saltar al contenido

Encuentra índices de filas duplicadas en pandas DataFrame

Solución:

Usar parámetro duplicated con keep=False para todas las filas engañadas y luego groupby por todas las columnas y convertir valores de índice en tuplas, última conversión de salida Series para list:

df = df[df.duplicated(keep=False)]

df = df.groupby(list(df)).apply(lambda x: tuple(x.index)).tolist()
print (df)
[(1, 6), (2, 4), (3, 5)]

Si desea ver también valores duplicados:

df1 = (df.groupby(df.columns.tolist())
       .apply(lambda x: tuple(x.index))
       .reset_index(name="idx"))
print (df1)
   param_a  param_b  param_c     idx
0        0        0        0  (1, 6)
1        0        2        1  (2, 4)
2        2        1        1  (3, 5)

Enfoque # 1

Aquí hay un enfoque vectorizado inspirado en this post

def group_duplicate_index(df):
    a = df.values
    sidx = np.lexsort(a.T)
    b = a[sidx]

    m = np.concatenate(([False], (b[1:] == b[:-1]).all(1), [False] ))
    idx = np.flatnonzero(m[1:] != m[:-1])
    I = df.index[sidx].tolist()       
    return [I[i:j] for i,j in zip(idx[::2],idx[1::2]+1)]

Ejecución de muestra –

In [42]: df
Out[42]: 
   param_a  param_b  param_c
1        0        0        0
2        0        2        1
3        2        1        1
4        0        2        1
5        2        1        1
6        0        0        0

In [43]: group_duplicate_index(df)
Out[43]: [[1, 6], [3, 5], [2, 4]]

Enfoque # 2

Para los marcos de datos con números enteros, podríamos reducir cada fila a un escalar y eso nos permite trabajar con un 1D matriz, dándonos una más eficaz, así:

def group_duplicate_index_v2(df):
    a = df.values
    s = (a.max()+1)**np.arange(df.shape[1])
    sidx = a.dot(s).argsort()
    b = a[sidx]

    m = np.concatenate(([False], (b[1:] == b[:-1]).all(1), [False] ))
    idx = np.flatnonzero(m[1:] != m[:-1])
    I = df.index[sidx].tolist() 
    return [I[i:j] for i,j in zip(idx[::2],idx[1::2]+1)]

Prueba de tiempo de ejecución

Otro (s) enfoque (s) –

def groupby_app(df): # @jezrael's soln
    df = df[df.duplicated(keep=False)]
    df = df.groupby(df.columns.tolist()).apply(lambda x: tuple(x.index)).tolist()
    return df

Tiempos –

In [274]: df = pd.DataFrame(np.random.randint(0,10,(100000,3)))

In [275]: %timeit group_duplicate_index(df)
10 loops, best of 3: 36.1 ms per loop

In [276]: %timeit group_duplicate_index_v2(df)
100 loops, best of 3: 15 ms per loop

In [277]: %timeit groupby_app(df) # @jezrael's soln
10 loops, best of 3: 25.9 ms per loop
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *