Saltar al contenido

Eliminar filas vacías de un archivo de datos en R

Estate atento ya que en esta noticia vas a hallar la respuesta que buscas.

Solución:

Supongo que desea eliminar filas que son todas NA. Entonces, puedes hacer lo siguiente:

data <- rbind(c(1,2,3), c(1, NA, 4), c(4,6,7), c(NA, NA, NA), c(4, 8, NA)) # sample data
data
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    1   NA    4
[3,]    4    6    7
[4,]   NA   NA   NA
[5,]    4    8   NA

data[rowSums(is.na(data)) != ncol(data),]
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    1   NA    4
[3,]    4    6    7
[4,]    4    8   NA

Si desea eliminar filas que tienen al menos un NA, simplemente cambie la condición:

data[rowSums(is.na(data)) == 0,]
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    6    7

Si tiene filas vacías, no NA, puede hacer:

data[!apply(data == "", 1, all),]

Para eliminar ambos (NA y vacío):

data <- data[!apply(is.na(data) | data == "", 1, all),]

Aquí están algunas dplyr opciones:

# sample data
df <- data.frame(a = c('1', NA, '3', NA), b = c('a', 'b', 'c', NA), c = c('e', 'f', 'g', NA))

library(dplyr)

# remove rows where all values are NA:
df %>% filter_all(any_vars(!is.na(.)))
df %>% filter_all(any_vars(complete.cases(.)))  


# remove rows where only some values are NA:
df %>% filter_all(all_vars(!is.na(.)))
df %>% filter_all(all_vars(complete.cases(.)))  

# or more succinctly:
df %>% filter(complete.cases(.))  
df %>% na.omit

# dplyr and tidyr:
library(tidyr)
df %>% drop_na

Recuerda algo, que tienes permiso de añadir una estimación objetiva si te ayudó.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)


Tags : /

Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *