Hola usuario de nuestra página web, hallamos la respuesta a lo que buscabas, continúa leyendo y la encontrarás más abajo.
Ejemplo 1: convertir columna a pandas numéricos
# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame
# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)
Ejemplo 2: pandas categóricos a numéricos
#this will label the different catagories as 0,1,2,3....
dataset["sex"] = dataset["sex"].astype('category').cat.codes
Ejemplo 3: datos categóricos de panda en numerica
sex = train_dataset['Sex'].replace(['female','male'],[0,1])
print(sex)
Ejemplo 4: transformar variables categóricas python
from sklearn.preprocessing import LabelEncoder
lb_make = LabelEncoder()
obj_df["make_code"] = lb_make.fit_transform(obj_df["make"])
obj_df[["make", "make_code"]].head(11)
Ejemplo 5: pandas categóricos a numéricos
#this will label as one hot vectors (origin is split into 3 columns - USA, Europe, Japan and any one place will be 1 while the others are 0)
dataset['Origin'] = dataset['Origin'].map(1: 'USA', 2: 'Europe', 3: 'Japan')
Recuerda que puedes dar difusión a este escrito si te fue útil.
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)