Saltar al contenido

Ecualización de histogramas de imágenes en escala de grises con NumPy

Este team de expertos pasados algunos días de investigación y de recopilar de información, hemos dado con la solución, queremos que te sea de utilidad en tu proyecto.

Solución:

El comentario de Moose que apunta a esta entrada de blog hace el trabajo bastante bien.

Para completar, doy un ejemplo aquí usando nombres de variables más agradables y una ejecución en bucle en 1000 imágenes de 96×96 que están en un 4D array como en la pregunta. Es rápido (1-2 segundos en mi computadora) y solo necesita NumPy.

import numpy as np

def image_histogram_equalization(image, number_bins=256):
    # from http://www.janeriksolem.net/2009/06/histogram-equalization-with-python-and.html

    # get image histogram
    image_histogram, bins = np.histogram(image.flatten(), number_bins, density=True)
    cdf = image_histogram.cumsum() # cumulative distribution function
    cdf = 255 * cdf / cdf[-1] # normalize

    # use linear interpolation of cdf to find new pixel values
    image_equalized = np.interp(image.flatten(), bins[:-1], cdf)

    return image_equalized.reshape(image.shape), cdf

if __name__ == '__main__':

    # generate some test data with shape 1000, 1, 96, 96
    data = np.random.rand(1000, 1, 96, 96)

    # loop over them
    data_equalized = np.zeros(data.shape)
    for i in range(data.shape[0]):
        image = data[i, 0, :, :]
        data_equalized[i, 0, :, :] = image_histogram_equalization(image)[0]

Una forma muy rápida y fácil es utilizar la función de distribución acumulativa proporcionada por el módulo skimage. Básicamente lo que haces matemáticamente para probarlo.

from skimage import exposure
import numpy as np
def histogram_equalize(img):
    img = rgb2gray(img)
    img_cdf, bin_centers = exposure.cumulative_distribution(img)
    return np.interp(img, bin_centers, img_cdf)

Si haces scroll puedes encontrar las crónicas de otros gestores de proyectos, tú todavía tienes el poder insertar el tuyo si lo crees conveniente.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *