Solución:
La normal multivariante ahora está disponible en SciPy 0.14.0.dev-16fc0af
:
from scipy.stats import multivariate_normal
var = multivariate_normal(mean=[0,0], cov=[[1,0],[0,1]])
var.pdf([1,0])
Acabo de hacer uno para mis propósitos, así que pensé en compartirlo. Está construido usando “los poderes” de numpy, en la fórmula del caso no degenerado de http://en.wikipedia.org/wiki/Multivariate_normal_distribution y también valida la entrada.
Aquí está el código junto con una ejecución de muestra
from numpy import *
import math
# covariance matrix
sigma = matrix([[2.3, 0, 0, 0],
[0, 1.5, 0, 0],
[0, 0, 1.7, 0],
[0, 0, 0, 2]
])
# mean vector
mu = array([2,3,8,10])
# input
x = array([2.1,3.5,8, 9.5])
def norm_pdf_multivariate(x, mu, sigma):
size = len(x)
if size == len(mu) and (size, size) == sigma.shape:
det = linalg.det(sigma)
if det == 0:
raise NameError("The covariance matrix can't be singular")
norm_const = 1.0/ ( math.pow((2*pi),float(size)/2) * math.pow(det,1.0/2) )
x_mu = matrix(x - mu)
inv = sigma.I
result = math.pow(math.e, -0.5 * (x_mu * inv * x_mu.T))
return norm_const * result
else:
raise NameError("The dimensions of the input don't match")
print norm_pdf_multivariate(x, mu, sigma)
Si aún es necesario, mi implementación sería
import numpy as np
def pdf_multivariate_gauss(x, mu, cov):
'''
Caculate the multivariate normal density (pdf)
Keyword arguments:
x = numpy array of a "d x 1" sample vector
mu = numpy array of a "d x 1" mean vector
cov = "numpy array of a d x d" covariance matrix
'''
assert(mu.shape[0] > mu.shape[1]), 'mu must be a row vector'
assert(x.shape[0] > x.shape[1]), 'x must be a row vector'
assert(cov.shape[0] == cov.shape[1]), 'covariance matrix must be square'
assert(mu.shape[0] == cov.shape[0]), 'cov_mat and mu_vec must have the same dimensions'
assert(mu.shape[0] == x.shape[0]), 'mu and x must have the same dimensions'
part1 = 1 / ( ((2* np.pi)**(len(mu)/2)) * (np.linalg.det(cov)**(1/2)) )
part2 = (-1/2) * ((x-mu).T.dot(np.linalg.inv(cov))).dot((x-mu))
return float(part1 * np.exp(part2))
def test_gauss_pdf():
x = np.array([[0],[0]])
mu = np.array([[0],[0]])
cov = np.eye(2)
print(pdf_multivariate_gauss(x, mu, cov))
# prints 0.15915494309189535
if __name__ == '__main__':
test_gauss_pdf()
En caso de que haga cambios en el futuro, el código está aquí en GitHub
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)