Saltar al contenido

Crear archivo pydicom desde numpy array

Solución:

Aquí hay una versión funcional del código que necesitaba escribir. Escribirá una imagen DICOM en escala de grises de 16 bits a partir de un 2D dado array de píxeles. Según el estándar DICOM, los UID deben ser únicos para cada imagen y serie, por lo que este código no se preocupa, porque no sé qué hacen realmente los UID. Si alguien más lo hace, estaré feliz de agregarlo.

import dicom, dicom.UID
from dicom.dataset import Dataset, FileDataset
import numpy as np
import datetime, time

def write_dicom(pixel_array,filename):
    """
    INPUTS:
    pixel_array: 2D numpy ndarray.  If pixel_array is larger than 2D, errors.
    filename: string name for the output file.
    """

    ## This code block was taken from the output of a MATLAB secondary
    ## capture.  I do not know what the long dotted UIDs mean, but
    ## this code works.
    file_meta = Dataset()
    file_meta.MediaStorageSOPClassUID = 'Secondary Capture Image Storage'
    file_meta.MediaStorageSOPInstanceUID = '1.3.6.1.4.1.9590.100.1.1.111165684411017669021768385720736873780'
    file_meta.ImplementationClassUID = '1.3.6.1.4.1.9590.100.1.0.100.4.0'
    ds = FileDataset(filename, ,file_meta = file_meta,preamble=""*128)
    ds.Modality = 'WSD'
    ds.ContentDate = str(datetime.date.today()).replace('-','')
    ds.ContentTime = str(time.time()) #milliseconds since the epoch
    ds.StudyInstanceUID =  '1.3.6.1.4.1.9590.100.1.1.124313977412360175234271287472804872093'
    ds.SeriesInstanceUID = '1.3.6.1.4.1.9590.100.1.1.369231118011061003403421859172643143649'
    ds.SOPInstanceUID =    '1.3.6.1.4.1.9590.100.1.1.111165684411017669021768385720736873780'
    ds.SOPClassUID = 'Secondary Capture Image Storage'
    ds.SecondaryCaptureDeviceManufctur = 'Python 2.7.3'

    ## These are the necessary imaging components of the FileDataset object.
    ds.SamplesPerPixel = 1
    ds.PhotometricInterpretation = "MONOCHROME2"
    ds.PixelRepresentation = 0
    ds.HighBit = 15
    ds.BitsStored = 16
    ds.BitsAllocated = 16
    ds.SmallestImagePixelValue = '\x00\x00'
    ds.LargestImagePixelValue = '\xff\xff'
    ds.Columns = pixel_array.shape[0]
    ds.Rows = pixel_array.shape[1]
    if pixel_array.dtype != np.uint16:
        pixel_array = pixel_array.astype(np.uint16)
    ds.PixelData = pixel_array.tostring()

    ds.save_as(filename)
    return



if __name__ == "__main__":
#    pixel_array = np.arange(256*256).reshape(256,256)
#    pixel_array = np.tile(np.arange(256).reshape(16,16),(16,16))
    x = np.arange(16).reshape(16,1)
    pixel_array = (x + x.T) * 32
    pixel_array = np.tile(pixel_array,(16,16))
    write_dicom(pixel_array,'pretty.dcm')

El ejemplo anterior funciona, pero hace que muchas herramientas se quejen de los DICOM y ni siquiera se puedan leer usando itk / SimpleITK como una pila. La mejor manera que he encontrado para hacer DICOM a partir de numpy es utilizando las herramientas SimpleITK y generando los DICOM rebanada por rebanada. Un ejemplo básico (https://github.com/zivy/SimpleITK/blob/8e94451e4c0e90bcc6a1ffdd7bc3d56c81f58d80/Examples/DicomSeriesReadModifyWrite/DicomSeriesReadModifySeriesWrite.py) muestra cómo cargar, y luego volver a guardar archivos, realizar una transformación fácilmente. modificado utilizando el

import SimpleITK as sitk
filtered_image = sitk.GetImageFromArray(my_numpy_array)

El número de etiquetas en última instancia en la imagen de salida es bastante grande y, por lo tanto, crearlas manualmente es tedioso. Además, SimpleITK admite imágenes de 8, 16 y 32 bits, así como RGB, por lo que es mucho más fácil que hacerlas en pydicom.

(0008, 0008) Image Type                          CS: ['DERIVED', 'SECONDARY']
(0008, 0016) SOP Class UID                       UI: Secondary Capture Image Storage
(0008, 0018) SOP Instance UID                    UI: 1.2.826.0.1.3680043.2.1125.1.35596048796922805578234000521866725
(0008, 0020) Study Date                          DA: '20170803'
(0008, 0021) Series Date                         DA: '20170803'
(0008, 0023) Content Date                        DA: 0
(0008, 0030) Study Time                          TM: '080429.171808'
(0008, 0031) Series Time                         TM: '080429'
(0008, 0033) Content Time                        TM: 0
(0008, 0050) Accession Number                    SH: ''
(0008, 0060) Modality                            CS: 'OT'
(0008, 0064) Conversion Type                     CS: 'WSD'
(0008, 0090) Referring Physician's Name          PN: ''
(0010, 0010) Patient's Name                      PN: ''
(0010, 0020) Patient ID                          LO: ''
(0010, 0030) Patient's Birth Date                DA: ''
(0010, 0040) Patient's Sex                       CS: ''
(0018, 2010) Nominal Scanned Pixel Spacing       DS: ['1', '3']
(0020, 000d) Study Instance UID                  UI: 1.2.826.0.1.3680043.2.1125.1.33389357207068897066210100430826006
(0020, 000e) Series Instance UID                 UI: 1.2.826.0.1.3680043.2.1125.1.51488923827429438625199681257282809
(0020, 0010) Study ID                            SH: ''
(0020, 0011) Series Number                       IS: ''
(0020, 0013) Instance Number                     IS: ''
(0020, 0020) Patient Orientation                 CS: ''
(0020, 0052) Frame of Reference UID              UI: 1.2.826.0.1.3680043.2.1125.1.35696880630664441938326682384062489
(0028, 0002) Samples per Pixel                   US: 1
(0028, 0004) Photometric Interpretation          CS: 'MONOCHROME2'
(0028, 0010) Rows                                US: 40
(0028, 0011) Columns                             US: 50
(0028, 0100) Bits Allocated                      US: 32
(0028, 0101) Bits Stored                         US: 32
(0028, 0102) High Bit                            US: 31
(0028, 0103) Pixel Representation                US: 1
(0028, 1052) Rescale Intercept                   DS: "0"
(0028, 1053) Rescale Slope                       DS: "1"
(0028, 1054) Rescale Type                        LO: 'US'
(7fe0, 0010) Pixel Data                          OW: Array of 8000 bytes

Actualización 2020 🙂

Ninguna de estas respuestas funcionó para mí. Esto es lo que terminé con para guardar un segmento MR monocromático válido de 16 bpp que se muestra correctamente al menos en Slicer, Radiant y MicroDicom:

import pydicom
from pydicom.dataset import Dataset, FileDataset
from pydicom.uid import ExplicitVRLittleEndian
import pydicom._storage_sopclass_uids

image2d = image2d.astype(np.uint16)

print("Setting file meta information...")
# Populate required values for file meta information

meta = pydicom.Dataset()
meta.MediaStorageSOPClassUID = pydicom._storage_sopclass_uids.MRImageStorage
meta.MediaStorageSOPInstanceUID = pydicom.uid.generate_uid()
meta.TransferSyntaxUID = pydicom.uid.ExplicitVRLittleEndian  

ds = Dataset()
ds.file_meta = meta

ds.is_little_endian = True
ds.is_implicit_VR = False

ds.SOPClassUID = pydicom._storage_sopclass_uids.MRImageStorage
ds.PatientName = "Test^Firstname"
ds.PatientID = "123456"

ds.Modality = "MR"
ds.SeriesInstanceUID = pydicom.uid.generate_uid()
ds.StudyInstanceUID = pydicom.uid.generate_uid()
ds.FrameOfReferenceUID = pydicom.uid.generate_uid()

ds.BitsStored = 16
ds.BitsAllocated = 16
ds.SamplesPerPixel = 1
ds.HighBit = 15

ds.ImagesInAcquisition = "1"

ds.Rows = image2d.shape[0]
ds.Columns = image2d.shape[1]
ds.InstanceNumber = 1

ds.ImagePositionPatient = r"01"
ds.ImageOrientationPatient = r"1-1"
ds.ImageType = r"ORIGINALPRIMARYAXIAL"

ds.RescaleIntercept = "0"
ds.RescaleSlope = "1"
ds.PixelSpacing = r"11"
ds.PhotometricInterpretation = "MONOCHROME2"
ds.PixelRepresentation = 1

pydicom.dataset.validate_file_meta(ds.file_meta, enforce_standard=True)

print("Setting pixel data...")
ds.PixelData = image2d.tobytes()

ds.save_as(r"out.dcm")

Tenga en cuenta lo siguiente:

  • Pasar por el constructor FileDataset como sugieren los documentos de PyDicom no pudo crear un encabezado válido para mí
  • validate_file_meta creará algunos elementos faltantes en el encabezado para usted (versión)
  • Necesita especificar endianness y VR explícita / implícita dos veces: /
  • Este método le permitirá crear un volumen válido y siempre que actualice ImagePositionPatient y InstanceNumber para cada segmento en consecuencia
  • Asegúrate de que tu numpy array se convierte en formato de datos que tiene la misma cantidad de bits que su BitsStored

Te mostramos las comentarios y valoraciones de los lectores

Te invitamos a corroborar nuestra publicación añadiendo un comentario o puntuándolo te estamos eternamente agradecidos.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *