Solución:
Muy facil con Pandas
.
import pandas
from collections import Counter
a = ['a', 'a', 'a', 'a', 'b', 'b', 'c', 'c', 'c', 'd', 'e', 'e', 'e', 'e', 'e']
letter_counts = Counter(a)
df = pandas.DataFrame.from_dict(letter_counts, orient="index")
df.plot(kind='bar')
Darse cuenta de Counter
está haciendo un recuento de frecuencia, por lo que nuestro tipo de gráfico es 'bar'
no 'hist'
.
aquí hay un enfoque conciso de todos los pandas:
a = ['a', 'a', 'a', 'a', 'b', 'b', 'c', 'c', 'c', 'd', 'e', 'e', 'e', 'e', 'e']
pd.Series(a).value_counts().plot('bar')
Como @notconfusing señaló anteriormente, esto se puede resolver con Pandas y Counter. Si por cualquier razón por la que no necesite usar Pandas puedes arreglártelas con solo matplotlib
usando la función en el siguiente código:
from collections import Counter
import numpy as np
import matplotlib.pyplot as plt
a = ['a', 'a', 'a', 'a', 'b', 'b', 'c', 'c', 'c', 'd', 'e', 'e', 'e', 'e', 'e']
letter_counts = Counter(a)
def plot_bar_from_counter(counter, ax=None):
""""
This function creates a bar plot from a counter.
:param counter: This is a counter object, a dictionary with the item as the key
and the frequency as the value
:param ax: an axis of matplotlib
:return: the axis wit the object in it
"""
if ax is None:
fig = plt.figure()
ax = fig.add_subplot(111)
frequencies = counter.values()
names = counter.keys()
x_coordinates = np.arange(len(counter))
ax.bar(x_coordinates, frequencies, align='center')
ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
return ax
plot_bar_from_counter(letter_counts)
plt.show()
Que producirá
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)