Nuestro grupo de trabajo ha estado horas investigando para dar solución a tu búsqueda, te regalamos la solución y deseamos resultarte de gran apoyo.
Solución:
El código que muestra @sascha es correcto. sin embargo, el grid_scores_
attribute pronto quedará en desuso. Es mejor usar el cv_results
attribute.
Se puede implementar de manera similar al método @sascha:
def plot_grid_search(cv_results, grid_param_1, grid_param_2, name_param_1, name_param_2):
# Get Test Scores Mean and std for each grid search
scores_mean = cv_results['mean_test_score']
scores_mean = np.array(scores_mean).reshape(len(grid_param_2),len(grid_param_1))
scores_sd = cv_results['std_test_score']
scores_sd = np.array(scores_sd).reshape(len(grid_param_2),len(grid_param_1))
# Plot Grid search scores
_, ax = plt.subplots(1,1)
# Param1 is the X-axis, Param 2 is represented as a different curve (color line)
for idx, val in enumerate(grid_param_2):
ax.plot(grid_param_1, scores_mean[idx,:], '-o', label= name_param_2 + ': ' + str(val))
ax.set_title("Grid Search Scores", fontsize=20, fontweight='bold')
ax.set_xlabel(name_param_1, fontsize=16)
ax.set_ylabel('CV Average Score', fontsize=16)
ax.legend(loc="best", fontsize=15)
ax.grid('on')
# Calling Method
plot_grid_search(pipe_grid.cv_results_, n_estimators, max_features, 'N Estimators', 'Max Features')
Lo anterior da como resultado la siguiente trama:
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn import datasets
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
digits = datasets.load_digits()
X = digits.data
y = digits.target
clf_ = SVC(kernel='rbf')
Cs = [1, 10, 100, 1000]
Gammas = [1e-3, 1e-4]
clf = GridSearchCV(clf_,
dict(C=Cs,
gamma=Gammas),
cv=2,
pre_dispatch='1*n_jobs',
n_jobs=1)
clf.fit(X, y)
scores = [x[1] for x in clf.grid_scores_]
scores = np.array(scores).reshape(len(Cs), len(Gammas))
for ind, i in enumerate(Cs):
plt.plot(Gammas, scores[ind], label='C: ' + str(i))
plt.legend()
plt.xlabel('Gamma')
plt.ylabel('Mean score')
plt.show()
- El código se basa en esto.
- La única parte desconcertante: sklearn siempre respetará el orden de C y Gamma -> el ejemplo oficial usa este “orden”
Producción:
Quería hacer algo similar (pero escalable a una gran cantidad de parámetros) y aquí está mi solución para generar gráficos de enjambre de la salida:
score = pd.DataFrame(gs_clf.grid_scores_).sort_values(by='mean_validation_score', ascending = False)
for i in parameters.keys():
print(i, len(parameters[i]), parameters[i])
score[i] = score.parameters.apply(lambda x: x[i])
l =['mean_validation_score'] + list(parameters.keys())
for i in list(parameters.keys()):
sns.swarmplot(data = score[l], x = i, y = 'mean_validation_score')
#plt.savefig('170705_sgd_optimisation//'+i+'.jpg', dpi = 100)
plt.show()
Eres capaz de proteger nuestra labor dejando un comentario o valorándolo te lo agradecemos.
¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)