Saltar al contenido

ángulo de la línea de tendencia usando el ejemplo de código de Python

Ya no busques más por todo internet ya que llegaste al lugar indicado, contamos con la solución que necesitas pero sin complicaciones.

Ejemplo: python stock de la línea de tendencia

import trendln
# this will serve as an example for security or index closing prices, or low and high pricesimport yfinance as yf # requires yfinance - pip install yfinance
tick = yf.Ticker('^GSPC')# S&P500
hist = tick.history(period="max", rounding=True)
mins, maxs = calc_support_resistance(hist[-1000:].Close)
minimaIdxs, pmin, mintrend, minwindows = calc_support_resistance((hist[-1000:].Low,None))#support only
mins, maxs = calc_support_resistance((hist[-1000:].Low, hist[-1000:].High))(minimaIdxs, pmin, mintrend, minwindows),(maximaIdxs, pmax, maxtrend, maxwindows)= mins, maxs

(minimaIdxs, pmin, mintrend, minwindows),(maximaIdxs, pmax, maxtrend, maxwindows)= 
	calc_support_resistance(# list/numpy ndarray/pandas Series of data as bool/int/float and if not a list also unsigned# or 2-tuple (support, resistance) where support and resistance are 1-dimensional array-like or one or the other is None# can calculate only support, only resistance, both for different data, or both for identical data
	h,# METHOD_NAIVE - any local minima or maxima only for a single interval (currently requires pandas)# METHOD_NAIVECONSEC - any local minima or maxima including those for consecutive constant intervals (currently requires pandas)# METHOD_NUMDIFF (default) - numerical differentiation determined local minima or maxima (requires findiff)
	extmethod = METHOD_NUMDIFF,# METHOD_NCUBED - simple exhuastive 3 point search (slowest)# METHOD_NSQUREDLOGN (default) - 2 point sorted slope search (fast)# METHOD_HOUGHPOINTS - Hough line transform optimized for points# METHOD_HOUGHLINES - image-based Hough line transform (requires scikit-image)# METHOD_PROBHOUGH - image-based Probabilistic Hough line transform (requires scikit-image)
	method=METHOD_NSQUREDLOGN,# window size when searching for trend lines prior to merging together
	window=125,# maximum percentage slope standard error
	errpct =0.005,# for all METHOD_*HOUGH*, the smallest unit increment for discretization e.g. cents/pennies 0.01
	hough_scale=0.01# only for METHOD_PROBHOUGH, number of iterations to run
	hough_prob_iter=10,# sort by area under wrong side of curve, otherwise sort by slope standard error
	sortError=False,# accuracy if using METHOD_NUMDIFF for example 5-point stencil is accuracy=3
	accuracy=1)# if h is a 2-tuple with one value as None, then a 2-tuple is not returned, but the appropriate tuple instead# minimaIdxs - sorted list of indexes to the local minima# pmin - [slope, intercept] of average best fit line through all local minima points# mintrend - sorted list containing (points, result) for local minima trend lines# points - list of indexes to points in trend line# result - (slope, intercept, SSR, slopeErr, interceptErr, areaAvg)# slope - slope of best fit trend line# intercept - y-intercept of best fit trend line# SSR - sum of squares due to regression# slopeErr - standard error of slope# interceptErr - standard error of intercept# areaAvg - Reimann sum area of difference between best fit trend line#   and actual data points averaged per time unit# minwindows - list of windows each containing mintrend for that window# maximaIdxs - sorted list of indexes to the local maxima# pmax - [slope, intercept] of average best fit line through all local maxima points# maxtrend - sorted list containing (points, result) for local maxima trend lines#see for mintrend above# maxwindows - list of windows each containing maxtrend for that window

Reseñas y puntuaciones del post

Ten en cuenta comunicar esta noticia si te valió la pena.

¡Haz clic para puntuar esta entrada!
(Votos: 0 Promedio: 0)



Utiliza Nuestro Buscador

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *